PRS Publications

Have this publication emailed to you.

Climate Effects on Prairie Productivity Partially Ameliorated by Soil Nutrients and Plant Community Responses

Reed, P. B., H.R. Assour, A. Okotie-Oyekan, G.T. Bailes, B. R. Johnson, A. A. Nelson, L. Pfeifer-Meister, B.A. Roy and S.D. Bridgham . 2023.

Abstract

Net primary productivity (NPP) is a key ecosystem function of plant communities. Climate change is expected to affect NPP both directly and indirectly through associated edaphic and plant community factors. Changes in soil nutrients, plant species richness and/or functional group dominance may amplify or counteract direct climatic effects on NPP, and responses may differ above-versus belowground, making it challenging to predict the net effects on NPP. In this study, we manipulated temperature and precipitation at four sites spanning a latitudinal Mediterranean-climate gradient in the Pacific Northwest, USA, and measured aboveground, belowground, and total NPP responses in experimentally assembled prairie plant communities. Using structural equation models, we disentangled the direct effects of climate from its indirect effects through soil nutrient availability and plant community responses. We found that warming, primarily by reducing soil moisture (that is, drying), had a net negative effect on all aspects of NPP, but these negative effects were partially ameliorated by increasing nitrogen and phosphorus availability, as well as changes to the plant community. Specifically, warming, drying, and greater nutrient availability caused species richness to decline, leading to greater dominance by a restricted set of functional groups, which positively affected aboveground NPP. Furthermore, a shift from perennial grass to annual grass dominance increased the ratio of aboveground to belowground NPP. Our results demonstrate that the indirect effects of climate change can help partially buffer the negative direct effects on NPP in Mediterranean-climate prairies. However, increasing soil moisture limitation may still overwhelm the positive effects of such intermediary pathways.