PRS Publications

Food production is essential. Western Ag's lab is OPEN and receiving shipments of samples.

Have this publication emailed to you.

Non-native competitive perennial grass impedes the spread of an invasive annual grass.

Davies K. W., A. M. Nafus and R. L. Sheley. 2010. Biological Invasions 12:3187-3194

Abstract

Invasive plants are degrading wildlands around the globe by displacing native species, reducing biodiversity, and altering ecological functions. The current approach of applying herbicides to invasive plants in wildlands has not been effective at curtailing their expansion and, in certain circumstances, may do more harm than good. Preventing the spread of invasive species has been identified as an important strategy to protect wildlands. However, few prevention strategies have actually been tested. We hypothesized that establishing competitive vegetation next to infestations would increase the biotic resistance of the plant community to invasion and decrease the invasive species propagule pressure beyond the competitive vegetation. To evaluate this, we established twelve competitive vegetation barriers in front of invasive annual grass, Taeniatherum caput-medusae (L.) Nevski, infestations. The nonnative perennial grass Agropyron desertorum (Fisch. ex Link) Schult. was seeded into plant communities adjacent to the infestations to create the competitive vegetation barriers. Soil nutrient concentrations and the spread of T. caput-medusae were compared between where A. desertorum was seeded and not seeded (control treatment) 3 years after treatment. Less T. caput-medusae and lower soil ammonium and potassium concentrations in the competitive vegetation barrier than control treatment (P <= 0.01) suggest that establishing competitive vegetation increased the biotic resistance of the plant communities to invasion. Taeniatherum caput-medusae cover and density in the plant communities protected by the competitive vegetation barrier (locales across the barriers from the infestations) were~42- and 47-fold less, respectively, than unprotected plant communities (P<0.01). This suggests that invasive plant propagule pressure was decreased in the plant communities protected by competitive vegetation barriers. The establishment of competitive vegetation around infestations may be an effective strategy to prevent or at least reduce the spread of invasive plant species.

Key Words

Biotic resistance, Invasibility, Medusahead, Prevention, Propagule pressure